Conceptos de inteligencia artificial: qué son las GANs o redes generativas antagónicas

La inteligencia artificial ha dado pasos de gigante a la hora de ser capaz de identificar objetos en una imagen. ¿Necesitamos, por ejemplo, procesar miles de fotos de mascotas para que identifique en cuál de ellas aparecen gatos? Ya es posible. La IA también es capaz, por ejemplo, de desentrañar las reglas de un juego a fuerza de jugar miles de veces contra ella misma.

Pero el problema surge cuando a una IA le pedimos que cree algo nuevo, algo que no existía antes. Porque la IA podrá simular nuestra inteligencia, pero no nuestra imaginación.

El origen de las GANs

Hace cinco años, durante un debate en un bar con compañeros del doctorado, un estudiante de la Universidad de Montreal tuvo una idea acerca de cómo solventar este obstáculo.

“Quería probar que tenía razón así que me fui del bar, escribí el código de madrugada, mandé un mail a mis compañeros y luego elaboramos un paper juntos”.

Como casi todo en la ciencia, el joven se basaba en investigaciones anteriores, como los trabajos publicados por Jürgen Schmidhuber en la década de los 90 sobre ‘previsibilidad de minimización’ y ‘curiosidad artificial’, así como en el concepto de ‘aprendizaje de Turing’ teorizado en 2013 por Li, Gauci y Bruto.

¿Cómo funcionan las GANs?

De estas ‘redes generativas antagónicas’ (tal es su traducción en español), más conocidas sencillamente como GANs, dijo en una ocasión Yann LeCon, Científico Jefe de inteligencia artificial en Facebook AI Research, que eran “la idea más interesante en machine learning de la última década”.

Esa idea en la que se sustentan es tan simple como ingeniosa, pues radica en enfrentar dos redes neuronales que compiten en un constante juego de suma cero (la ganancia o pérdida de una de las redes se compensa con la ganancia o pérdida de la opuesta).

Así, una de las redes, la generativa, va produciendo muestras de aquello que queramos crear (imágenes, textos, sonidos…); ese primer intento será fallido, pues ya hemos dicho que a la IA se le da mal crear cosas nuevas. Como afirma el propio Goodfellow,

“Si empezamos con un dataset de imágenes de perros, al comienzo el generador ofrecerá imágenes al azar, que parecerán ruido estático, como el de una TV analógica vieja”.

Pero ahí es donde entra la segunda red, la discriminadora; entrenada en algo que a la IA se le da mucho mejor —la identificación—, analiza el material producido por la red generativa y determina si se ajusta a lo que está buscando: es decir, hablando en términos técnicos, decide si cada instancia de datos que revisa pertenece o no al conjunto de datos de entrenamiento.

Leave a Reply

Your e-mail address will not be published. Required fields are marked *